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Abstract

A new estimator of the pairwise relatedness coefficient between individuals adapted to
dominant genetic markers is developed. This estimator does not assume genotypes to be
in Hardy-Weinberg proportions but requires a knowledge of the departure from these
proportions (i.e. the inbreeding coefficient). Simulations show that the estimator provides
accurate estimates, except for some particular types of individual pairs such as full-sibs,
and performs better than a previously developed estimator. When comparing marker-
based relatedness estimates with pedigree expectations, a new approach to account for
the change of the reference population is developed and shown to perform satisfactorily.
Simulations also illustrate that this new relatedness estimator can be used to characterize
isolation by distance within populations, leading to essentially unbiased estimates of the
neighbourhood size. In this context, the estimator appears fairly robust to moderate errors
made on the assumed inbreeding coefficient. The analysis of real data sets suggests that
dominant markers (random amplified polymorphic DNA, amplified fragment length
polymorphism) may be as valuable as co-dominant markers (microsatellites) in studying
microgeographic isolation-by-distance processes. It is argued that the estimators developed
should find major applications, notably for conservation biology.
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Introduction

Several estimators of pairwise relatedness coefficients
between individuals using information from co-dominant
genetic markers have been developed (e.g. Queller &
Goodnight 1989; Loiselle et al. 1995; Ritland 1996; Hardy &
Vekemans 1999; Lynch & Ritland 1999; Wang 2002). These
estimators can be particularly useful to the study of sibship
structure, isolation-by-distance in continuous populations,
kin selection, inbreeding depression, and for marker-based
inferences of quantitative inheritance in natural populations.

To obtain estimates of relatedness coefficients with suf-
ficient precision, the polymorphism available (i.e. the
number of polymorphic loci and the number of alleles per
locus) is a critical factor (e.g. Ritland 1996; Lynch & Ritland
1999; Wang 2002). In this respect, microsatellites are often
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recognized as the most efficient genetic markers (Estoup &
Angers 1998) because they typically display many alleles
per locus (e.g. Streiff et al. 1998; Lynch & Ritland 1999) and
are co-dominant. Precise relatedness estimates might also
be obtained using dominant markers such as amplified
fragment length polymorphisms (AFLP) or random ampli-
fied polymorphic DNA (RAPD) because these markers
usually display a large number of polymorphic (di-allelic)
loci (tens to hundreds of polymorphic loci are commonly
reported, e.g. Albertson efal. 1999; Gerber etal. 2000;
Degen et al. 2001a,b; Wilding ef al. 2001). Furthermore, in
comparison to co-dominant markers, dominant markers
can be developed relatively easily even for species for
which no prior genetic information is available and at a
relatively low cost (Mueller & Wolfenbarger 1999). Con-
sequently, dominant markers may represent excellent
alternative tools to co-dominant markers to address ques-
tions requiring the estimation of relatedness between
individuals. However, to my knowledge, only Lynch &
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Milligan (1994) developed an estimator of pairwise related-
ness between individuals adapted to dominant markers.
As Lynch & Milligan (1994) assumed Hardy—-Weinberg
genotypic proportions, their estimator is not adequate to
assess relatedness in organisms where selfing occurs (e.g.
many plant species), or to study isolation-by-distance pro-
cesses where biparental inbreeding occurs. Therefore, the
development of a new estimator for dominant markers
that can account for heterozygote deficiency could be of
broad interest for population geneticists.

In this paper, using the framework of quantitative gen-
etics, new estimators of relatedness between individuals
are developed, adapted to dominant markers. Contrary to
Lynch & Milligan (1994), it will not be assumed that geno-
types are in Hardy-Weinberg proportions, but it will be
assumed nevertheless that we have an accurate idea of the
departure from these proportions (i.e. the inbreeding co-
efficient is known). Computer simulations are then used
to investigate the statistical properties of these new estim-
ators, with the aim of (i) comparing their performance with
the estimator proposed by Lynch & Milligan (1994) when
inferring relatedness between simple types of relatives in
the absence of inbreeding and (ii) assessing their perform-
ance to characterize isolation-by-distance processes within
a population. Finally, a comparison is presented of the
potential power of RAPD/AFLP vs. microsatellite markers
to characterize spatial genetic structure.

Theory and analytical developments

Terminology and definitions

Throughout the population genetics literature much confu-
sion occurs in the terminology used to name the different
types of relatedness coefficients between individuals. In
this paper, the term ‘relatedness’ coefficient will be used as
a generic name for any coefficient describing some feature
of the genetic similarity between individuals as a result of
common ancestry. Among these relatedness coefficients
the closely related ‘kinship’ (synonymous to ‘co-ancestry’)
and ‘relationship’ coefficients will be distinguished, which
depend on the probabilities of identity of homologous
genes from different individuals when single pairs of genes
are considered (definitions below). The term ‘inbreeding’
coefficient will express the similarity between homologous
genes occurring within individuals. Additional types of
relatedness coefficient exist, for example the ‘fraternity’
coefficient (Lynch & Walsh 1998), which depends on the
probabilities of double identity of homologous genes from
different individuals when quadruplets of genes from two
diploids are considered. Here, estimators will be derived
only for kinship and relationship coefficients.

To make the link with previous publications, the so-called
‘relatedness’ estimators of Queller & Goodnight (1989) and

Lynch & Milligan (1994), as well as the ‘v’ coefficients of
Lynch & Ritland (1999) and Wang (2002), correspond to the
‘relationship’ coefficient according to the present termino-
logy [which follows Wright (1922) who first defined this
coefficient]. On the contrary, Ritland’s (1996) ‘relatedness’
estimator, also denoted ‘r’, as well as the ‘p’ estimator
used by Loiselle et al. (1995), are estimators of the kin-
ship coefficient following the present terminology.

Problems of consistency across the literature regarding
the various relatedness coefficients are not over, as exact
definitions of the parameters estimated are also challeng-
ing. As a population genetic parameter, the kinship coeffi-
cient between two individuals i and j, Fi]., is commonly
defined as the probability of identity-by-descent (IBD), ©,
between a random gene from i and a random gene from j
(e.g. Ritland 1996; Lynch & Ritland 1999). However, as
shown by Rousset (2002), the marker-based estimators of
F;; coefficients cited above do not estimate a probability of
IBD in general, notably when applied on individuals from
a population under isolation-by-distance. The parameter
assessed by marker-based estimators of F;;is better defined
as a ratio of differences of probabilities of identity-in-state
(IIS) between homologous genes (Rousset 2002), and is
sometimes called the ‘conditional kinship” coefficient. I
thus define pairwise kinship coefficients as

_9-Q
Fifz 1_Q (1)

where Q;; is the probability of IIS between random genes
from i and j, and Q between random genes within a
‘reference population’ (or a reference sample). Similarly, the
relationship coefficient of i relative to j can be defined as
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when i and j are assumed to be diploids of identical
inbreeding levels, Q, being the probability of IIS between
genes within individuals (Hardy & Vekemans 1999). This
definition is not general in the sense that it does not apply
when i and j are not both diploids, situations where r;; can
be different from r;;, but such cases will not be considered
in this paper. Combining eqn 1 and eqn 2, we see that
kinship and relationship coefficients are related in the
following way:

2l @)
r., = ———
Y 1+F

where F| is the inbreeding coefficient, defined as

FleO__Q )

1-Q
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Hence, under Hardy-Weinberg genotypic proportions
with diploids, r;; =2F;. Note that eqn 4 shows that the
inbreeding coefficient is essentially a kinship coefficient
between homologous genes within individuals.

The definitions given above are in terms of probabilities
of IIS, which is convenient when using genetic markers
because IIS is the sole information available. Alternatively,
these coefficients could be defined in terms of ratio of dif-
ferences of probabilities of IBD, simply replacing all Q by
O in the preceding definitions, which would be more con-
venient when dealing with pedigree information. As a
ratio of differences of probabilities of IIS approximates the
equivalent ratio of differences of probabilities of IBD when
mutation can be neglected (Rousset 2002), IIS- and IBD-
based definitions are essentially equivalent under the
low mutation limit. Thus, Fi]. as defined above provides an
approximation of (©; — @)/(1 - @) rather than of ©.

Conversion between marker-based and pedigree-based
relatedness estimates

It is important to keep in mind that relatedness coefficients
depend on a ‘reference population” (or ‘reference sample’),
and express a degree of genetic similarity between
individuals relative to the average genetic similarity
between the individuals found in the reference population.
Consequently, negative values of the relatedness
coefficients may be obtained, meaning that i and j are less
related on average than random individuals from the
‘reference’ population. Actually, as any two organisms on
earth are assumed to be somehow genetically related by
the standard theory of evolution, a relatedness coefficient
must always be defined relative to some reference level of
relatedness. However, the reference is not always the same
according to the way relatedness is computed.

When relatedness is assessed from genetic markers, the
‘reference population” is usually a sample of individuals
(i.e. Q in eqn 1 is the probability of IIS of random genes
from the sample). In this case, the average relatedness over
all pairs of individuals within the sample is zero by defini-
tion. It follows that the relatedness coefficient estimates
depend on the sampling scheme [a feature of relatedness
coefficients criticised by Rousset (2002) who proposed
alternative descriptors]. On the contrary, when relatedness
is computed from pedigree information using path ana-
lysis (Lynch & Walsh 1998), the ‘reference population’ is
represented by the ancestral individuals at the top of the
pedigree (the base generation), and these ancestors are
usually assumed to be equally related to each other. Hence,
if estimates of relatedness based on genetic markers are to
be compared with values expected from pedigree informa-
tion, it is necessary to take into account that there is a shift
of reference population (i.e. shift of Q). Note that a pedi-
gree provides IBD information, not IIS information, so that
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the kinship coefficient inferred by path analysis matches
the definition given in eqn 1 only when mutations occur-
ring since the ancestors can be neglected. I now show
how to recalibrate relatedness coefficients while chang-
ing of reference population.

Let F° represent kinship coefficients relative to a sample
of individuals and F¥ represents kinship coefficients rela-
tive to the base generation of a given pedigree. Using the
pedigree information, F; can easily be deduced from F,]p
using eqn 1:

EF? — Fp
AR B 5)
/ 1- Fsp

where FP is the average kinship coefficient between
individuals from the sample, relative to the base generation
of the pedigree (F} > 0).

To make the reverse conversion (i.e. estimating F i]’f’ from the
Fi; estimates obtained using genetic markers) it is necessary
to identify pairs of individuals in the sample that are repres-
entative of ‘unrelated” individuals from the point of view
of the pedigree (i.e. individuals that do not share common
ancestry since the base generation). Let FSy, be the average
estimate of the kinship coefficient relative to the sample for
these ‘unrelated’ individuals (FSy is expected to be < 0), 124
can therefore be estimated as:

.. E-F
fy =i 0
1- kg

Note that eqns 5 and 6 can also be applied on the
relationship coefficients defined as in eqn 2, replacing F by
r. Moreover, eqn 6 can be applied in a broader context to
estimate coefficients relative to the level of relatedness
between particular pairs of individuals, in which case ESy
represents the average kinship coefficient relative to the
sample for these ‘reference’ pairs of individuals.

Equation 6 can only be applied when a priori knowledge
on genealogy that permits identification of pairs of ‘unre-
lated” individuals is available, as for example when mater-
nal sib families are identified so that pairs of individuals
from different families can be considered as “unrelated’. In
the absence of such information it might be tempting to use
the F; estimates themselves to identify such pairs (e.g.
considering the ij pairs showing the lowest F; estimates
as a reference level), but this is not recommended because
it is circular and would cause strongly biased estimates.

The link between the relatedness coefficients presented
here and F-statistics merits a few words. F-statistics parti-
tion the genetic variance within and among structural enti-
ties (e.g. individuals, populations), and are also inbreeding
(Fg, Fyp) or kinship (Fgp) coefficients. The commonly used
Weir & Cockerham’s (1984) estimator of Fg (®), estimates
the ratio (Q,, — Q,)/(1 — Q,), where subscripts w and a refer
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to genes sampled within and among populations, respect-
ively. Hence, Fg; is an average kinship coefficient among
genes within populations, relative to genes among popu-
lations. If eqn 6 is applied on a hierarchically structured
sample (e.g. sib families) to estimate the average kinship
coefficient among individuals within families, considering
individuals from different families as “unrelated’, the mean
F,f obtained is essentially equivalent to an Fg; estimate
among families.

New estimators of relatedness coefficients using dominant
markers

To develop relatedness estimators for a diploid organism
using dominant genetic markers, a quantitative genetics
approach will be used. The ‘reference population’ for these
estimators will be a given sample of individuals. Firstly, it
must be noted that the F;; and r;; definitions given above in
terms of probabilities of IIS between genes can also be
expressed in terms of correlation coefficients between
allelic states of genes, making the link with quantitative
genetics more straightforward. Thus, Fl.j as defined in eqn
1 can equivalently be defined as the expected correlation
coefficient between the allelic states of random genes from
iandj. Similarly, r;; as defined in eqn 2 can be defined as the
expected correlation coefficient between the individual
allele frequencies of i and j (individual allele frequen-
cies equal 0, '/2, or 1; see Hardy & Vekemans 1999). To
obtain relatedness estimators for a dominant marker, the
correlation between the genotypic values expressed by the
marker (the genotypic value of an individual is X =1 if
the dominant allele is present, otherwise it is X = 0), called the
‘genotypic correlation’, here denoted p;;, is related to the
relationship coefficient r;. The logic is that single locus
genotypic values are directly observable by genetic markers
(e.g. presence/absence of a band) so that p; values are
easily estimated from a sample of genotyped individuals.

The expression of the correlation between the genotypic
values of relatives at a single locus in the presence of
inbreeding and dominance effect is complicated, involving
six different types of relatedness coefficients and vari-
ance components (Cockerham & Weir 1984). However, the
expression simplifies considerably in the absence of
inbreeding and/or a dominance effect. Without inbreed-
ing (but with dominance),

py=H 1+ (1 -1 A, @)

where 12 is the ratio of the additive variance, Va, over the
genotypic variance, Vt, the latter being the sum of the
additive and dominance variance components (Vt = Va +
Vd), and A is the “fraternity” coefficient between i and j
(Lynch & Walsh 1998). Thus, h? can be interpreted as the
narrow-sense heritability of the dominant marker. Ineqn?7,

the relationship coefficient, ;;, accounts for the correlation
due to additive effects, whereas the fraternity coefficient,
Aij, accounts for the correlation due to dominance effects.
Thus, when Ai/ =0 or i’ =1 (i.e. correlation depends only

on additive effects), eqn 7 reduces to P = hzri]., so that the
relationship coefficient can be estimated as
?i =P /h? ©))

Clearly, eqn 8 provides a biased estimate when A;; > 0 and
1 <1, but A;; is positive only when i and j share common
ancestry simultaneously through their mothers and fathers
(Aij =0, 0and 0.25 between parent-offspring, half-sibs, and
full-sibs, respectively). Hence, without inbreeding, eqn
8 should provide a good approximation of the relation-
ship coefficient between individuals that are not related
through both maternal and paternal genes. Moreover,
when 42 tends to 1 (dominance variance negligible), Pii =Ty
even in the presence of inbreeding (e.g. Lynch & Walsh
1998), so that eqn 8 remains exact. The estimators of
relatedness coefficients proposed here will be based on
eqn 8. They thus implicitly assume that nonadditive
components of the correlation between the genotypic
values of the individuals being compared can be neglected.
The consequent bias of this simplification will be assessed
later by simulation. For now we just need an estimator
of K%

Standard Fisher decomposition of the variance
expressed by a single locus dominant character in a diploid
organism permits the expression of /* as a function of the
frequency of the dominant allele, d, and the inbreeding
coefficient (assumed to be constant across individuals), F;:

_Va _ 2(1 - d1 - F)
CVt (A+F)2-F -dl-F))

2

©

The quantity d is unknown but can be estimated from the
frequency of the dominant genotype, D, by noting that (1 -
D) is the frequency of homozygotes for the recessive allele,
so that

1-D=(1-d)*(1-F) + (1 -d)F, (10

Thus, solving eqn 10, i? can be expressed as

2 (F2+40-F)A-D) +F,

1+Fl\§F12+4(1—F1)(1—D)+2—F,

1n)

Equation 11 can be used to estimate /2, replacing D by the
observed frequency of the dominant phenotype in the
sample (D), and F; by some independent estimate (F)).
Hereafter, it is assumed that F, is known. Note that simply
replacing D and F;, by unbiased estimates in eqn 11

© 2003 Blackwell Publishing Ltd, Molecular Ecology, 12, 1577-1588
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Fig. 1 Narrow sense heritability of the phenotype expressed by a
dominant genetic marker (#%) according to the frequency of the
dominant phenotype (D) and the inbreeding coefficient (F)).

provides a biased /? estimator because the equation is all
but linear, but problems of bias will be addressed later
directly on the relatedness estimators.

Figure 1 illustrates how /? varies according to D for dif-
ferent values of F}, showing that h* can become very low for
large D and low F}, but approaches unity when D is low
and/or F, is large, conditions for which eqn 8 is therefore
expected to result in a good approximation.

The phenotypic correlation between two individuals can
be estimated as

_ Cou(X;, X;) (X; = D)(X; - D)

5 Hatacis] 12
Pi = V) DA - D) (12)

with X; =0 for i showing the recessive phenotype, and
X;=1 for the dominant phenotype. Equation 12 gives a
somewhat biased estimator because individuals i and j
belong to the sample used to estimate D. Most of this
sampling bias can be corrected by adding the term 1/(n — 1)
to eqn 12, where n is the sample size. Single locus
relationship and kinship coefficient estimates follow
naturally as 7; = p;;/ h? (eqn 8) and Ifij =71+ F))/2 (eqn
3). Multilocus estimates can be obtained as weighted
averages of single locus estimates. It is suggested that
the ratio of the sums of the numerator terms over the
denominator terms is taken, so that each locus is weighted
approximately by D(1 — D)I?, giving more weight to loci
with high h? values (which are expected to be less biased by
dominance effects):

) g,(xki - Dk)(ij -Dyp

. _ (13)
T TS D, - Di?
k

or, with the sample size correction,
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DXy =D =D+ D (-Dhg/ (n=1]
K (14)

i 3D, a-D)h?
k

where D, is the observed frequency of the dominant
phenotype at locus k in the sample, and ﬁ% is the estimated
heritability for locus k, according to eqn 11. An estimator of
the kinship coefficient for dominant markers, Fdij, can be
derived combining eqns 3 and 14:

DXy = DXy — D)+ Dy (1= Dhz/ (1 -1))

_I+h %
S5.0- Do
k

if 2

(15)
One should note the similarity between these estim-
ators for dominant markers and the estimator of kinship

coefficient described in Loiselle et al. (1995) and Kalisz et al.
(2001) for co-dominant markers, here called Fci]-:

2 = Ay — dy)

Fc,, = -k 1/Q@n -2 1
CI] de(l —dk) +1/@2n ) (16)
k

where Y, is the kth allele frequency in individual i (Y}; =0,
!/20r 1), and d, is the kth allele frequency in the sample (the
sums applying over all alleles of all loci). As demonstrated
by Hardy & Vekemans (1999), the autocorrelation Moran’s
I statistic applied on individual allele frequencies is equal
to 2/(1 + F) multiplied by estimator in eqn 16 (neglecting
the sampling bias correction), and gives an estimator of the
relationship coefficient. Hence, statistical properties that
will be assessed for Fc;; are also valid for Moran’s I statistic.

Statistical performance of the new relatedness
estimators

Marker-based relatedness estimates between individuals
are notorious for their extreme associated variance (e.g.
Lynch & Ritland 1999), and the problem is even more
pronounced with dominant markers (Lynch & Milligan
1994). Hence, a marker-based estimate of relatedness
obtained for a single pair of individuals is usually of little
help to characterize the genealogical relationship between
these individuals, which led Lynch & Milligan (1994) to
conclude that the utility of dominant markers (they though
RAPD in that time) for relatedness estimation is rather
limited. There are however, two ways to overcome this
difficulty: (i) using a huge number of polymorphic (and
ideally unlinked) loci, or (ii) averaging estimates over many
‘analogue’ pairwise comparisons between individuals (i.e.
pairs of individuals assumed to be equally related according
to some independent knowledge). Throughout this paper,
the second approach will be used. For example, knowing a
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priori which pairs of individuals are sibs, an average
relatedness estimate between sibs can be computed to infer
which type of sibs occurs (half-sibs vs. full-sibs). Similarly,
when investigating isolation-by-distance processes under
isotropic dispersal, one can assume that the relatedness
between individuals separated by a given spatial distance
is constant and can be estimated by averaging related-
ness estimates for all pairs of individuals separated by
this distance. Regarding the first approach, the minimal
number of loci required to assess the relatedness between
two given individuals will be estimated by investigating
the sampling variance associated with pairwise relatedness
coefficients.

Performance of the estimators for simple types of relatives
under random mating

Relatedness coefficients can be used to distinguish among
different types of relatives, such as nonrelatives, parent—
offspring, half-sibs, or full-sibs. The statistical properties of
the relationship coefficient estimators were assessed on the
basis of the average estimates between sibs and nonsibs
from a sample of 100 individuals. The latter consisted of 20
families of five sibs (half-sibs or full-sibs) derived from a
large random mating population. Such samples were
generated by simulating random mating events in a large
(infinite) parental population at Hardy—Weinberg equi-
librium, assuming independent Mendelian inheritance at
100 diallelic loci (allele frequencies followed a uniform
distribution between 0 and 1 across loci). The information
at these loci was transformed to represent a dominant marker,
and average single locus and multilocus relatedness coef-
ficients for all pairs of sibs and for all pairs of unrelated
individuals (i.e. members of different families) were com-
puted on 100 replicates. This was done using the relationship
coefficient estimator following eqn 14, hereafter denoted
ry, with F; = 0, as well as using the estimator of Lynch
& Milligan (1994; equations 17 and 18 in their paper),
denoted 7.

To assess their bias, these r; estimators were compared
with their expectations, which are equal to 0, 0.25 and 0.5
between unrelated individuals, half-sibs and full-sibs,
respectively (e.g. Lynch & Walsh 1998), when the ‘refer-
ence’ population is the parental generation. However, it is
first necessary to change of shift the reference population,
the marker-based r;; estimators being relative to the sample
of sib families. To obtain the expected r;; for sibs and unre-
lated individuals relative to the sample reference, eqn 5
was applied. The mean relatedness between random
individuals relative to the parental generation is rf =
20 * (5 *4) * 0.5/(100*99) = 0.0202 in the case of full-sib fam-
ilies,and r? =20 * (5 * 4) * 0.25/(100 * 99) = 0.0101 in the case
of half-sib families. Therefore, relative to the sample of sib
families, the relatedness between nonrelatives (i.e. nonsibs)

is r§r=(0-0.0202)/(1-0.0202) = -0.0206 and 3= (0-0.0101)/
(1-0.0101) =—-0.0102 in the case of full-sib and half-sib families,
respectively, whereas the relatedness between sibs is 7} =
(0.5-0.0202)/(1-0.0202) = 0.4897 and r; = (0.25-0.0101)/(1-
0.0101) = 0.2423 in the case of full-sib and half-sib families,
respectively. Conversely, relatedness between sibs relative
to the parental generation can be estimated from the
marker-based estimates relative to the sample using non-
sibs as reference as in eqn 6:

= 6 = R/ (0 = )

Figure 2 shows expectations and mean single locus
estimates of r; and rif' for nonsibs, half-sibs and full-sibs

0.659 A. Relatedness relative to a sample of full-sib families

B. Relatedness relative to a sample of half-sib families

4 C. Relatedness relative to the parental generation

”

0.0 0.1 02 03 0.4 05 06 0.7 08 09 1.0
D

Fig. 2 Dependency of the estimators of relationship coefficients, r,
on the frequency of the dominant phenotype, D. Mean single-
locus estimates of the relationship estimator developed in this
paper, r; (@, A, ), and Lynch & Milligan (1994) estimator, r; ; (O,
O, ), are presented for pairs of unrelated individuals (@, O), half-
sibs (A, A) and full-sibs (M, [J). The estimates are relative to a
sample of half-sib families (A), full-sib families (B), or relative to
the parental generation using nonsibs as reference (C). Horizontal
lines represent theoretical expectations for full-sibs (stippled
lines), half-sibs (broken dotted lines), and unrelated individuals,
i.e. nonsibs (dotted lines).

© 2003 Blackwell Publishing Ltd, Molecular Ecology, 12, 1577-1588



ESTIMATING RELATEDNESS WITH DOMINANT MARKERS 1583

according to the frequency class of the dominant phenotype,
using either ry or r;,,. The ry estimator (filled symbols)
gives slightly biased estimates for nonrelatives as well as
for half-sibs, except at extreme frequencies of the dominant
phenotype (downward bias), but it suffers substantial
upward bias for full-sibs when the dominant phenotype is
frequent. The r; ,, estimator (open symbols) performs mod-
erately well with nonrelatives, showing a slight downward
bias at intermediate frequencies of the dominant pheno-
type but substantial upward bias at extreme frequencies,
and it works fairly badly with half-sibs or full-sibs, gener-
ally suffering a downward bias of increasing importance
with the frequency of the dominant phenotype.

The upward bias of estimator ry; for full-sibs is in line
with our previous expectations, as the genotypic correla-
tion between full-sibs is not purely additive, and h?
decreases with higher frequencies of the dominant pheno-
type (Fig. 1). It is worth noting that the effect of extreme
frequencies causing lower estimates (Fig. 2) is not confined
to the r;; estimator adapted to dominant markers, as such an
effect is also observed for estimators using the information
from co-dominant markers, such as the one described by
eqn 16 (results not shown), a point also made by Rousset
(2002).

Average and standard deviations of the multilocus
estimates (100 loci) relative to the sample of half-sib
families were equal to r; = —0.010 £ 0.002 and 7, = 0.000 +
0.002 between nonrelatives (expected value —0.010), and
= 0.240 £ 0.017 and r, = 0.185 £ 0.013 between half-sibs
(expected value 0.242). Similarly, with full-sib families,
ry =—0.024 £0.003 and r;,,; = —0.012 £ 0.003 between non-
relatives (expected value —0.021), and ry =0.576 +0.023
and r,, = 0.433 £0.017 between full-sibs (expected value
0.490).

When estimates between sibs were transformed using
nonsibs as reference to obtained relatedness relative to
the parental generation, average and standard deviations
of the multilocus estimates (100 loci) were, for half-sibs,
g =0.248 £0.018 and 7, = 0.169 £ 0.011 (expected value
0.25), and for full-sibs, r; = 0.594 +0.022 and r;,, = 0.416
*0.015 (expected value 0.5).

In conclusion, the r;,, estimator suffers downward bias
for both half and full sibs, whereas the r;; estimator devel-
oped in this paper seems essentially unbiased for nonrela-
tives and half-sibs, but is upwardly biased for full-sibs. The
results also suggest that the approach developed for chang-
ing of reference population (eqns 5 and 6) is appropriate
for comparisons of marker-based relatedness estimates
with pedigree-based expectations, as confirmed when this
approach was applied on relatedness estimators adapted
to co-dominant markers (eqn 16, results not shown).

To assess the sampling variance associated with related-
ness estimates between two individuals (single pair), 1000
replicates of the simulation procedure presented above

© 2003 Blackwell Publishing Ltd, Molecular Ecology, 12, 1577-1588
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Fig. 3 Standard error of the ry; coefficient computed for a single
pair of individuals according to the number of loci (log-log scale)
in the case of half-sibs (A) or unrelated individuals (O).

were made and estimates of ry; (relative to the sample)
between two half-sibs and between two unrelated indi-
viduals were obtained using one to 1000 loci. For # loci, the
standard error (SE, the square root of the sampling vari-
ance) of the ry; estimates was approximately equal to V3/n
(the variance was inversely proportional to the number of
loci), although the SE was slightly higher between half-sibs
than between nonrelatives (Fig. 3). To find the minimum
number of loci required for assessing relatedness between
two given individuals, one must define the precision nec-
essary for ry; estimates. For example, to be able to distin-
guish between half-sibs and unrelated individuals, the SE
should be less than about 0.1. To reach such precision, 300
loci would be required (Fig. 3), leading to 92% correct clas-
sifications (results not shown). However, such precision is
insufficient to distinguish, for example, first cousins from
unrelated individuals (ry; differ by about 0.0625), in which
case nearly 5000 loci would be necessary to obtain
SE = 0.025. In reality, the prospective precision would not
be reached even with such a large number of loci because
many loci would be linked along the chromosomes, pro-
viding nonindependent information (loci were unlinked in
the simulations).

In conclusion, with dominant markers, relatedness coef-
ficients are not efficient tools with which to assess the par-
entage between two given individuals. For such a purpose,
a better alternative would be a likelihood approach, testing
whether two individuals fall into a particular parentage
class (e.g. Thompson 1975; Mousseau et al. 1998), exploit-
ing the interlocus information (which is not exploited by
relatedness coefficients).

Performance of the estimators under isolation by distance

Under isolation-by-distance processes, the relationship
between F;; (or r;) and the spatial distance, d;, between
individuals is predicted by analytical models (Rousset
1997, 2000; Hardy & Vekemans 1999; Barton ef al. 2002). A
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convenient theoretical result predicts that, in a two-
dimensional space, F; decreases approximately linearly
with the natural logarithm of di]-, ln(dij), and the rate of
decay (slope) is close to —(1 — F)/(4n8,6%), where ©t = 3.14,
d, is an effective density of individuals (i.e. accounting for
the variance in reproductive success among individuals),
o’ is the axial variance of gene dispersal distances, and F,
is the kinship coefficient between adjacent individuals
(which is used as an approximation of the kinship between
competing gametes before selection; F. Rousset, personal
communication). The linearity between F; and In(d;) is
actually best observed within a limited distance range,
approximately between ¢ and 200 (Rousset 1997). The
quantity 4m8,6° can be interpreted as a neighbourhood
size, N, which characterizes the extent of local genetic drift
(Wright 1943). Hence, characterizing the spatial genetic
pattern of populations subject to isolation-by-distance
using kinship coefficients can provide indirect estimates of
the neighbourhood size.

It was investigated whether the estimator of the kinship
coefficient developed herein, Fd;, permits accurate esti-
mates of the neighbourhood size to be obtained. Because
Hardy-Weinberg proportions cannot be assumed under
isolation-by-distance, the Lynch and Milligan estimator
will not be considered, but results will be compared with
those obtained for a diallelic co-dominant marker, using
the estimator from eqn 16, Fc;;, so that the loss of accuracy
and/or precision due to the dominant nature of a marker
will be evaluated.

The performances of the F;; estimators were assessed
on data sets obtained by simulating an individual-based
isolation-by-distance model, similar to that described
in Hardy & Vekemans (1999). Basically, a population of
1600 hermaphrodite diploid individuals filling a 40 x 40
squared grid was simulated with discrete (i.e. nonoverlap-
ping) generations. Each individual was characterized at up
to 200 diallelic loci. The initial generation was generated by
drawing alleles at random for each locus, where initial
allele frequencies followed a uniform distribution between
0.05 and 0.95 across loci. In subsequent generations, new
individuals were produced by drawing, independently for
each locus, an allele from each of two parents from the pre-
vious generation. Parents were randomly chosen assum-
ing that gametes disperse according to a centred isotropic
bivariate normal distribution of variance 6%=4 lattice
units”. The self fertilization rate (i.e. the probability that the
two gametes came from the same parent) depends on the
dispersal law, but it could be forced, in proportion s, to con-
trol the inbreeding level. Mutation and immigration were
not implemented, hence allele frequencies fluctuated by
genetic drift alone. Actually, a substantial level of immi-
gration would have affected the spatial genetic structure,
resulting in biased estimates of local gene dispersal (Hardy
& Vekemans 1999). Simulations were stopped after 200

generations, a time sufficiently long for the spatial genetic
structure to reach a quasi-equilibrium state (Hardy &
Vekemans 1999), and sufficiently short to avoid a substan-
tial reduction of genetic variability by drift. As 6 = 1 for the
lattice, the neighbourhood size was N, = 4n[4 + 4(1 —5)]/2,
giving N, = 50.3 when s = 0 (no forced autogamy).

According to runs, all individuals along one to 10 paral-
lel transects were sampled, excluding individuals at five or
fewer positions from the population edge to avoid border
effects. Hence, sample size varied between 30 and 300. On
each sample, the pairwise F; were estimated first by treat-
ing genotypes as co-dominant markers (eqn 16), Fc;;, and
second by transforming genotypes into phenotypes of
dominant markers (eqn 15), Fdij. To calculate Fdij, the F;
considered is the mean inbreeding coefficient calculated
over all loci.

Single locus and multilocus Fc; and Fd;; values were
regressed on the natural logarithm of i—j spatial dis-
tances, providing regression slopes, b. N, can be estimated
as —(1 - F)/b, where F, is the average F; estimate for
adjacent i, j individuals, but because such an estimate of
N, can reach extreme values when b approaches zero,
or meaningless negative values when b is positive, the
reciprocal estimate, b/(F,—1) was reported, and com-
pared to the expected 1/N, value. It is worth noting that
the b/(F,— 1) ratio is independent of the reference popu-
lation used to computed kinship coefficients [the (1 — Q)
terms in the numerator and denominator cancell, so that
changing the reference population is needless.

The average and standard deviations of b/(F, — 1) when
kinship coefficients are estimated using the information
available from a dominant or a co-dominant marker are
illustrated on Fig. 4 for different sampling schemes, where
the sample size or the number of loci scored varied (there
was no forced autogamy). These averages are all similar to
each other and close to the expected value (1/N, = 0.0199).
Some downward bias is however, observed when the sam-
ple size is small (30 individuals), this effect being observed
both for dominant and co-dominant markers. The stand-
ard deviations reduce when the sample size or the number
of loci increase. As a rough approximation, the variance is
reduced by two (the standard deviation by V2) when the
number of loci or the number of sampled individuals
is doubled. On average, the variance is 65% larger (the
standard deviation 28% larger) for the estimates based
on the information from a dominant marker relative to a
co-dominant marker.

When autogamy is forced to some level, results remain
very similar, Fd; and Fc;; leading both to accurate esti-
mates, but the difference of precision (standard deviations)
between estimates based on dominant and co-dominant
information is reduced (results not shown). At the extreme,
when F; =1 (complete homozygosity), Fd;; values are
almost identical to Fc;; values.
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Fig.4 Mean and standard deviation of the ratio b/(F,—1),
estimating the reciprocal of the neighbourhood size, for a
dominant (stippled bars) or a co-dominant (hatched bars) marker
according to (A) the number of loci assayed (with a sample size =
60), (B) the sample size (with 50 loci assayed). Stippled lines show
the expected value according to the simulated gene dispersal
parameters (1/N, = 0.0199).

These results demonstrate that the kinship estimator
developed here is well suited to characterize isolation-by-
distance. The inherent bias of the estimator, as observed
previously for full-sibs, appears to be negligible (even
under inbreeding), meaning that essentially all the pheno-
typic correlation among individuals at a dominant marker
is additive.

Up to now, the true inbreeding coefficient was assumed
to be known when computing Fd;;, but this information is
not necessarily available in practice. It is thus necessary to
assess the impact of an error made on the assumed
inbreeding coefficient on the accuracy of the estimates.
Figure5 shows that when there is little inbreeding
(F;=0.04), assuming erroneously a large value of the
inbreeding coefficient causes an overestimation of the
degree of spatial structure, hence an underestimation of
the neighbourhood size. Reciprocally, when there is much
inbreeding (here caused by forcing 90% of self-fertilization,
so that F; = 0.82), assuming erroneously a low value of
the inbreeding coefficient causes an underestimation of the
degree of spatial structure, hence an overestimation of the
neighbourhood size. It is noteworthy that a moderate error
on the assumed F; value, for example of no more than 0.2,
causes a bias in the ratio b/(F,— 1)) of less than 15%. A
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Fig.5 Mean and standard deviation of the ratio b/(F,—1),
estimating the reciprocal of the neighbourhood size, for a
dominant marker according to the assumed inbreeding coefficient
when (A) the actual inbreeding coefficient is high (F, = 0.82), (B)
the actual inbreeding coefficient is low (F; = 0.04). Stippled lines
show the expected values according to the simulated gene
dispersal parameters: (A) 90% forced autogamy, 1/N, = 0.0362;
(B) no forced autogamy, 1/N, = 0.0199. Estimates are based on a
sample of 120 individuals assayed at 50 loci.

large error (e.g. assuming F; = 1 when the actual F; =0, or
reciprocally) causes a bias of no more than 40%. Thus, the
accuracy of an estimate of the neighbourhood size using
dominant markers appears fairly robust to the error made
on the assumed level of inbreeding.

Relative performances of RAPD or AFLP vs.
microsatellite markers to characterize spatial genetic
structure

Microsatellite markers are generally considered the best
tool to address questions relative to microgeographic
genetic structure because they usually display high
numbers of alleles per locus compared to other co-
dominant markers (Estoup & Angers 1998), the level of
polymorphism available being a critical factor to get
precise inferences. The dominant markers provided by
RAPD or AFLP techniques may also be efficient for such
studies because they usually display a large number of loci
(e.g. Albertson et al. 1999; Mueller 1999; Gerber et al. 2000;
Degen etal. 2001a,b; Wilding 2001). To compare the
precision that can be obtained with RAPD or AFLP
markers and microsatellites when characterizing
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Table 1 Comparison of the precision [SD of b/(1 - F(1)) ratios]
provided by dominant and co-dominant markers with realistic
levels of polymorphism when characterizing spatial genetic
structure in simulated isolation-by-distance processes

Marker/species/sample No. of b/(1-F())
size used to set initial allele polymorphic ————
frequencies in simulations loci* Mean SD
Dominant marker

RAPD/Vouacapoua/59 40 0.0206 0.0049
AFLP/Quercus/43 147 0.0210  0.0024
Co-dominant marker

Microsatellite/ Vouacapoua /187 8 (45) 0.0201  0.0061
Microsatellite/ Quercus /43 6 (96) 0.0200 0.0038

SD is the standard deviation computed over 100 independent
simulation runs.
*Total no. of alleles.

microgeographic genetic structure, a population was
simulated under isolation-by-distance, as described before,
and dominant or co-dominant markers with realistic levels
of polymorphism were considered. Examples used were
the levels of polymorphism observed within populations
for two allogamous tree species: Vouacapoua americana
(Aublet) for RAPD (Degen et al. 2001a) and microsatellites
(Dutech et al. 2002), and Quercus petraea for AFLP (Gerber
etal. 2000) and microsatellites (Streiff efal. 1998). The
polymorphism available from microsatellite markers (total
number of alleles) was moderate in Vouacapoua americana
and higher in Quercus petraea (Table 1). Similarly, for the
dominant markers, the available polymorphism (number
of polymorphic loci) was higher for AFLP markers in
Quercus petraea than for RAPD markers in Vouacapoua
americana (Table 1; note that this does not mean that gene
diversity is higher in Quercus, just that there was more
polymorphism available from the markers developed on
Quercus). The initial allele frequencies used for the
simulations were thus (i) those observed at microsatellite
loci in either of the two tree species, or (ii) the square root
of the frequency of the null phenotype at each
polymorphic RAPD or AFLP band, which should closely
approximate the null allele frequencies as each species
showed genotypic proportions close to Hardy-Weinberg
expectations. After 200 generations, regression slopes, b, of
Fcl.j (for microsatellites) or Fdl./ (for RAPD or AFLP, with
F, = 0) values on the logarithm of the spatial distance were
computed on a sample of 180 individuals, and 100
replicates were run. The mean and standard deviations of
the b/(F,— 1) ratios are reported in Table 1.

For all parameter sets, the mean b/(F, - 1) values were
close to their theoretical expectation (0.0199), although
dominant markers gave slightly upwardly biased estimates.
As expected, within dominant or within co-dominant

markers, higher precisions (lower SD) were obtained when
the number of polymorphic loci or the total number of
alleles was higher (Table 1). The precision provided by
RAPD and AFLP markers was of the same order of magni-
tude as that provided by microsatellites, and within each
species the dominant marker actually provided somewhat
more precision than microsatellites (Table 1). Hence,
RAPD and AFLP techniques can be as valuable as micr-
osatellites in the characterization of spatial genetic structure,
at least when the inbreeding coefficient can be estimated
independently (and RAPD bands are reliable).

The same sample of 43 mapped individuals of Quercus
petraea was scored at AFLP and microsatellite loci, so that
the actual spatial genetic structures assessed by each
marker type could be compared. Figure 6 shows that both
types of markers provided congruent pictures of the
genetic structure. Consistency between markers is further-
more demonstrated by the b/(F,— 1) ratios, which were
equal to 0.0101 (SE = 0.0062) for microsatellites and 0.0135
(SE = 0.0049) for AFLP (approximate standard errors were
obtained by jackknifing over loci). When 10 000 randomiza-
tions of individual spatial locations were performed to test
for the spatial structure, the observed b/(F,—1) ratio
exceeded the value obtained after randomization in 9855
cases for microsatellites and 9957 cases for AFLP, showing
that the power to detect spatial structure was somewhat
higher with AFLP markers than microsatellites for this
particular example.

In the example given, the method used to infer gene dis-
persal from spatial genetic structure may seem to be not
very efficient as the estimated standard errors are close to

0.03
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Fig.6 Mean kinship coefficients between individuals in a
population of Quercus petraea as assessed using six microsatellite
markers (O) and 147 AFLP markers (A). The sample consisted of
43 genotyped individuals; each of the 10 distance classes involves
89-92 pairs of individuals. Error bars represent mean + SE, the
latter being assessed by a jackknifing procedure over loci.
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the average b/(F, - 1) values. The reason is the small sam-
ple size (microsatellites were originally scored on 166 trees
but the data set had to be reduced to allow legitimate com-
parison with AFLP markers which were scored on only 43
trees) and the efficiency of pollen dispersal in oaks causing
a weak level of structuring in Q. petraea. When the same
analysis was performed on 46 mapped individuals of the
co-occurring species, Q. robur, also scored for the same set
of AFLP (Gerber et al. 2000) and microsatellite (Streiff ef al.
1999) markers, no spatial genetic structure could be
detected with any of the markers in this species (results not
shown), which is consistent with the better seed dispersal
abilities of Q. robur compared to Q. petraea [Streiff ef al.
(1999) detected genetic structuring with microsatellites
in Q. robur but using a sample of 183 trees]. It is thus clear
that gene dispersal inference in species with extended dis-
persal abilities requires fairly large sample sizes to obtain
reasonably precise estimates using microsatellites or AFLP/
RAPD markers.

A very rough way to compare the potential precision
offered by different markers is to compute, for dominant
markers, the number of polymorphic bands, and for co-
dominant markers, the total number of alleles minus the
number of loci. The logic behind this is that for a locus with
equi-frequent alleles, the variance of kinship or relation-
ship coefficients estimates is approximately proportional
to the number of alleles minus one (Lynch & Ritland 1999).
Actually, the exact variance depends on the allele frequen-
cies, the degree of relatedness, and the statistic considered
but one can check that this simple guideline ranks correctly
the level of precision obtained by simulations (Table 1). It
should be noted that in all the simulations presented here,
independence among the loci was assumed. Clearly, when
tens or hundreds of loci are assayed in some species, such
as in RAPD or AFLP studies, the occurrence of pairs of
linked loci is highly probable. This should not affect the
accuracy of the estimates, but should somewhat lower
their precision because there is some redundancy in the
information. Therefore, in the presence of linked loci,
methods of numerical resampling of the loci (e.g. jackknife,
bootstrap) are likely to provide somewhat underestimated
standard errors.

Discussion

Because they suffer high sampling variance, marker-based
relatedness coefficients are not efficient to identify precisely
how two given individuals are genealogically related, espe-
cially using dominant markers. However, when prior in-
formation allows the identification of pairs of individuals
that should be equally related, average relatedness coef-
ficients can be very useful. It is shown herein that the
estimators of relatedness coefficients developed here are
well suited to characterize spatial genetic structure, leading
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to essentially unbiased estimates. They may be less suited
to characterize sibship structure because they overestimate
relatedness between full-sibs, but would still be useful to
distinguish half-sib families from full-sib families, because
the bias for full-sibs amplifies the difference in relatedness
estimates between half- and full-sibs.

When relatedness coefficients are used to assess parent-
age relationships between individuals by comparing them
to theoretical expectations, it is essential to account for the
references to which these coefficients are relative. This is
true irrespective of the dominant or co-dominant nature of
the markers. Thus, the expected marker-based relationship
coefficient between, say, two half-sibs is not necessarily
0.25, as it also depends on the relatedness among all pairs
of individuals present in the sample used as reference. An
approach to change of reference was presented and proved
efficient. But such a method is applicable only if some prior
knowledge about the genealogical structure of the sample
is available (i.e. the origin of each sampled individual
with respect to family, nest, or another structural unit is
known). On a sample of undefined individuals, marker-based
relatedness coefficients are generally useless, in part be-
cause the associated error on an estimate between two indi-
viduals is much too high, even when many loci are available.

It has also been shown that RAPD and AFLP markers
can be as efficient as microsatellites in characterizing
spatial genetic structure. Nevertheless, dominant markers
require prior knowledge of the inbreeding coefficient. The
latter can be obtained (i) using a co-dominant marker, (ii)
using the dominant markers if an outbred offspring gener-
ation can be obtained from the parental generation (Lynch
& Milligan 1994), or (iii) from knowledge of the mating sys-
tem. However, for some species, none of these approaches
may be applicable. Although the accuracy of the estimates
is rather robust to a moderate error on the assumed
inbreeding coefficient, the method might be improved to
avoid the need of an independent assessment of the
inbreeding level. To this end, a potential option would be
to develop an estimation procedure in the framework of
Bayesian inference, where the inbreeding coefficient
would be given uniform prior probabilities between 0 and
1 (Holsinger ef al. 2002).

For population geneticists, the possibility of using
RAPD or AFLP markers to assess relatedness between
individuals and to study microgeographic isolation-by-
distance processes is promising because, compared to micro-
satellite markers, many polymorphic loci can be obtained
fairly easily, in a relatively short time, and at a relatively low
cost (Mueller 1999). Hence, the methods developed in this
paper should find major population genetics applications,
notably in the field of conservation genetics, where mole-
cular markers need to be developed at reasonable cost.

The estimators of relatedness coefficients described in
this paper will be available in the software spAGeDI (Hardy
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& Vekemans 2002), which can be downloaded from the fol-
lowing website: http://www.ulb.ac.be/sciences/lagev/
spagedi.html.
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